

2021eko OHIKOA

ORDINARIA 2021

EVALUACIÓN PARA EL

ACCESO A LA UNIVERSIDAD

GIZARTE ZIENTZIEI APLIKATUTAKO MATEMATIKA II MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

- Azterketa honek zortzi problema ditu lau bloketan banatuta.
 Zortzi problema horietatik lauri erantzun behar diezu, eta lau horiek gutxienez hiru bloke desberdinetakoak izan behar dute.
- Jarraibideetan adierazitakoei baino galdera gehiagori erantzunez gero, erantzunak ordenari jarraituta zuzenduko dira, harik eta beharrezko kopurura iritsi arte.

Kalkulagailu zientifikoak erabil daitezke, baina, ezin ditu izan ezaugarri hauek:

- o pantaila grafikoa
- o datuak igortzeko aukera
- o programatzeko aukera
- ekuazioak ebazteko aukera
- matrize-eragiketak egiteko aukera
- o determinanteen kalkulua egiteko aukera
- deribatuak eta integralak ebazteko aukera
- o datu alfanumerikoak gordetzeko aukera.
- Este examen tiene ocho problemas distribuidos en cuatro bloques.
 De estos ocho problemas tienes que responder a cuatro, de por lo menos tres bloques diferentes.
- En caso de responder a más preguntas de las estipuladas, las respuestas se corregirán en orden hasta llegar al número necesario.

Está permitido el uso de calculadoras científicas <u>que no presenten</u> ninguna de las siguientes prestaciones:

- pantalla gráfica
- posibilidad de trasmitir datos
- o programable
- resolución de ecuaciones
- o operaciones con matrices
- cálculo de determinantes
- o derivadas e integrales
- o almacenamiento de datos alfanuméricos.

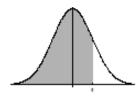
2021eko OHIKOA

EVALUACIÓN PARA EL ACCESO A LA UNIVERSIDAD

ORDINARIA 2021

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

GIZARTE ZIENTZIEI APLIKATUTAKO MATEMATIKA II



N(0,1)kurbak $-\infty$ -tikz-raino mugatutako azalerak Áreas limitadas por la curva N(0,1) desde $-\infty$ hasta z

	0	0'01	0'02	0'03	0'04	0'05	0'06	0'07	0'08	0'09
0	0'5000	0'5040	0'5080	0'5120	0'5160	0'5199	0'5239	0'5279	0'5319	0'5359
0'1	0'5398	0'5438	0'5478	0'5517	0'5557	0'5596	0'5636	0'5675	0'5714	0'5753
0'2	0'5793	0'5832	0'5871	0'5910	0'5948	0'5987	0'6026	0'6064	0'6103	0'6141
0'3	0'6179	0'6217	0'6255	0'6293	0'6331	0'6368	0'6406	0'6443	0'6480	0'6517
0'4	0'6554	0'6591	0'6628	0'6664	0'6700	0'6736	0'6772	0'6808	0'6844	0'6879
0'5	0'6915	0'6950	0'6985	0'7019	0'7054	0'7088	0'7123	0'7157	0'7190	0'7224
0'6	0'7257	0'7291	0'7324	0'7357	0'7389	0'7422	0'7454	0'7486	0'7517	0'7549
0'7	0'7580	0'7611	0'7642	0'7673	0'7704	0'7734	0'7764	0'7794	0'7823	0'7852
0'8	0'7881	0'7910	0'7939	0'7967	0'7995	0'8023	0'8051	0'8078	0'8106	0'8133
0'9	0'8159	0'8186	0'8212	0'8238	0'8264	0'8289	0'8315	0'8340	0'8365	0'8389
1	0'8413	0'8438	0'8461	0'8485	0'8508	0'8531	0'8554	0'8577	0*8599	0'8621
1'1	0'8643	0'8665	0'8686	0'8708	0'8729	0'8749	0'8770	0'8790	0'8810	0'8830
1'2	0'8849	0'8869	0'8888	0'8907	0'8925	0'8944	0'8962	0'8980	0'8997	0'9015
1'3	0'9032	0'9049	0'9066	0'9082	0'9099	0'9115	0'9131	0'9147	0'9162	0'9177
1'4	0'9192	0'9207	0'9222	0'9236	0'9251	0'9265	0'9279	0'9292	0'9306	0'9319
1'5	0'9332	0'9345	0'9357	0'9370	0'9382	0'9394	0'9406	0'9418	0'9429	0'9441
1'6	0'9452	0'9463	0'9474	0'9484	0'9495	0'9505	0'9515	0'9525	0'9535	0'9545
1'7	0'9554	0'9564	0'9573	0 9582	0'9591	0'9599	0'9608	0'9616	0'9625	0'9633
1'8	0'9641	0'9649	0'9656	0'9664	0'9671	0'9678	0'9686	0'9693	0'9699	0'9706
1'9	0'9713	0'9719	0'9726	0'9732	0'9738	0'9744	0'9750	0'9756	0'9761	0'9767
2	0'9772	0'9778	0'9783	0'9788	0'9793	0'9798	0'9803	0'9808	0'9812	0'9817
2'1	0'9821	0'9826	0'9830	0'9834	0'9838	0'9842	0'9846	0'9850	0'9854	0'9857
2'2	0'9861	0'9864	0'9868	0'9871	0'9875	0'9878	0'9881	0'9884	0'9887	0'9890
2'3	0'9893	0'9896	0'9898	0'9901	0'9904	0'9906	0'9909	0'9911	0'9913	0'9916
2'4	0'9918	0'9920	0'9922	0'9925	0'9927	0'9929	0'9931	0'9932	0'9934	0'9936
2'5	0'9938	0'9940	0'9941	0'9943	0'9945	0'9946	0'9948	0'9949	0'9951	0'9952
2'6	0'9953	0'9955	0'9956	0'9957	0'9959	0'9960	0'9961	0'9962	0'9963	0'9964
2'7	0'9965	0'9966	0'9967	0'9968	0'9969	0'9970	0'9971	0'9972	0'9973	0'9974
2'8	0'9974	0'9975	0'9976	0'9977	0'9977	0'9978	0'9979	0'9979	0'9980	0'9981
2'9	0'9981	0'9982	0'9982	0'9983	0'9984	0'9984	0'9985	0'9985	0'9986	0'9986
3	0'9987	0'9987	0'9987	0'9988	0'9988	0'9989	0'9989	0'9989	0'9990	0'9990
3'1	0'9990	0'9991	0'9991	0'9991	0'9992	0'9992	0'9992	0'9992	0'9993	0'9993
3'2	0'9993	0'9993	0'9994	0'9994	0'9994	0'9994	0'9994	0'9995	0'9995	0'9995
3'3	0'9995	0'9995	0'9995	0'9996	0'9996	0'9996	0'9996	0'9996	0'9996	0'9997
3'4	0'9997	0'9997	0'9997	0'9997	0'9997	0'9997	0'9997	0'9997	0'9997	0'9998
3'5	0'9998	0'9998	0'9998	0'9998	0'9998	0'9998	0'9998	0'9998	0'9998	0'9998
3'6	0'9998	0'9998	0'9999	0'9999	0'9999	0'9999	0'9999	0'9999	0'9999	0'9999
3'7	0'9999	0'9999	0'9999	0'9999	0'9999	0'9999	0'9999	0'9999	0'9999	0'9999
3'8	0'9999	0'9999	0'9999	0'9999	0'9999	0'9999	0'9999	0'9999	0'9999	0'9999
3'9	1'0000	1'0000	1'0000	1'0000	1'0000	1'0000	1'0000	1'0000	1'0000	1'0000

2021eko OHIKOA

ORDINARIA 2021

EVALUACIÓN PARA EL

ACCESO A LA UNIVERSIDAD

GIZARTE ZIENTZIEI APLIKATUTAKO MATEMATIKA II

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

BLOQUE: ÁLGEBRA

A.1. [hasta 2, 5 puntos]

Dada la matriz $A = \begin{pmatrix} 1 & -1 & 1 \\ m & n & 1 \\ 1 & 1 & 2 \end{pmatrix}$

- a) $[0,75 \ puntos]$ Obtener los valores de los parámetros m y n para que la matriz A coincida con su traspuesta, y no tenga inversa.
- b) $[0, 75 \ puntos]$ Para m = 0 y n = 3, obtener, si se puede, la matriz inversa.
- c) [1 punto] Para m = 0 y n = 3, resolver la ecuación matricial:

$$X \cdot A + 2 I_3 = A^2$$

B.1. [hasta 2, 5 puntos]

Una empresa produce dos tipos de camisas con perlas blancas, grises y rosas. Para hacer una camisa del tipo A hacen falta 20 perlas blancas, 20 grises y 30 rosas, mientras que para una camisa del tipo B se necesitan 10 perlas blancas, 20 grises y 60 rosas.

La empresa dispone de un máximo de 900 perlas blancas y 1400 grises, y decide utilizar al menos 1800 perlas rosas.

Se sabe que el beneficio que se obtiene por cada camisa del tipo A es de 60 euros, y por cada camisa del tipo B de 50 euros.

- a) [2 puntos] Calcula cuántas unidades de cada tipo de camisa debe producir para obtener el máximo beneficio, así como el valor de dicho beneficio.
- b) **[0,5 puntos]** ¿Es posible que la empresa fabrique 40 camisas del tipo A y 20 camisas del tipo B? Razona la respuesta.

2021eko OHIKOA

EVALUACIÓN PARA EL ACCESO A LA UNIVERSIDAD

ORDINARIA 2021

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

GIZARTE ZIENTZIEI APLIKATUTAKO MATEMATIKA II

BLOQUE: ANÁLISIS

A.2.[hasta 2,5 puntos]

Sea la función:

$$f(x) = \begin{cases} x^3 + 3x^2 & \text{si } x < 1 \\ ax + \frac{2}{x} & \text{si } x \ge 1 \end{cases}$$

- a) $[0,5 \ puntos]$ Determina el valor del parámetro a para que la función f(x) sea continua en el punto x=1.
- b) $[\![0,4 \ puntos]\!]$ En el caso $a=\frac{1}{2}$, determina la ecuación de la recta tangente a la función en el punto de abscisa x=2.
- c) $[\![1 \ punto]\!]$ En el caso a=2, realiza la representación gráfica de la función; para ello, calcula los máximos y mínimos relativos y los puntos de inflexión cuando x<1.
- d) [0,6 puntos] Calcula:

$$\int \left(x^3 + 3x^2 + \frac{2}{x} - \frac{4}{x^2}\right) dx$$

B.2. [hasta 2, 5 puntos]

Se considera la función $f(x) = ax^3 + bx + 11$

- a) [1 punto] Calcula el valor de los parámetros a y b para que la función f(x) tenga un extremo relativo en el punto (2, 5).
- b) $[0,75 \ puntos]$ En el caso $a=\frac{3}{8}$ y $b=\frac{-9}{2}$, estudia los extremos relativos y los puntos de inflexión de la función.
- c) $[\![0,75 \ puntos]\!]$ En el caso $a=\frac{3}{8}$ y $b=\frac{-9}{2}$, representa y calcula el área de la región limitada por la función, el eje de abscisas OX y las rectas x=-2 y x=2.

2021eko OHIKOA

ACCESO A LA UNIVERSIDAD

ORDINARIA 2021

EVALUACIÓN PARA EL

GIZARTE ZIENTZIEI APLIKATUTAKO MATEMATIKA II

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

BLOQUE: PROBABILIDAD

A.3. [hasta 2, 5 puntos]

Dos cajas, A y B, contienen bolas de colores con la siguiente composición:

A: 5 blancas, 3 negras y 2 rojas

B: 4 blancas y 6 negras

Por otro lado, tenemos un dado que tiene 4 caras marcadas con la letra A y las otras dos con la letra B. Tiramos el dado, y sacamos una bola al azar de la caja que indica el dado.

- a) [1 punto] ¿Cuál es la probabilidad de que esa bola sea blanca?
- b) [0,5 puntos] ¿Cuál es la probabilidad de que esa bola sea roja?
- c) [1 punto] La bola extraída ha resultado ser blanca. ¿Cuál es la probabilidad de que proceda de la caja B?

B.3. [hasta 2, 5 puntos]

Sean A, B, C, D, E, y F sucesos de un determinado experimento aleatorio.

- a) $[0, 75 \ puntos]$ Sabemos que P(A) = 0.5; $P(A \cup B) = 0.7$ y $P(A \cap B) = 0.4$. Halla la probabilidad de que ocurra B.
- b) $[\![1 \ punto]\!]$ Sabemos que P(C) = 0.4; P(D) = 0.3 y $P(C \cup D) = 0.5$. Halla la probabilidad de que ocurra C sabiendo que no ocurre D.
- c) $[0,75 \ puntos]$ Sabemos que P(E) = 0.6; P(F) = 0.8, y que los sucesos E y F son independientes. Calcula la probabilidad de que no ocurra ninguno de los dos sucesos.

2021eko OHIKOA

ORDINARIA 2021

EVALUACIÓN PARA EL

ACCESO A LA UNIVERSIDAD

GIZARTE ZIENTZIEI APLIKATUTAKO MATEMATIKA II

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

BLOQUE: INFERENCIA ESTADÍSTICA

A.4. [hasta 2, 5 puntos]

En un test de empatía el 40 % de la población examinada obtuvo un resultado inferior a 4 puntos. Sabemos que el resultado del test sigue una distribución normal de media 4,8 puntos.

- a) [0, 75 puntos] Calcula la desviación típica de la distribución.
- b) [0,75 puntos] Si la desviación típica es 3,14 puntos, ¿qué puntuación es superada únicamente por el 35 % de la población?
- c) [1 punto] Si la desviación típica es 3,14 puntos, ¿qué porcentaje de la población tiene un resultado que se diferencia de la media en menos de 2 puntos?

B.4. [*hasta* 2, 5 *puntos*]

El gasto que realizan los jóvenes de una determinada ciudad durante un fin de semana es una variable aleatoria que sigue una distribución normal de media μ desconocida y desviación típica 6 euros.

- a) [1,5 puntos] Se toma una muestra aleatoria simple, y se obtiene que el intervalo de confianza para la media es (24,47, 26,43) con un nivel de confianza del 95 %. Calcula el valor de la media muestral y el tamaño de la muestra elegida.
- b) [1 punto]. Se ha seleccionado otra muestra de tamaño 49 para estimar μ. Calcula el error máximo admisible cometido para dicha estimación con un nivel de confianza del 97 %.

MATEMATICAS APLICADAS A LAS CIENCIAS SOCIALES II (ORDINARIA 2021)

CRITERIOS GENERALES DE EVALUACIÓN

- 1. El examen está compuesto de ocho ejercicios.
- 2. De estos ocho ejercicios se tiene que responder a cuatro, de por lo menos tres bloques diferentes.
- **3.** En caso de responder a más preguntas de las estipuladas, las respuestas se corregirán en orden hasta llegar al número necesario.
- 4. El examen se evaluará con una puntuación entre 0 y 10 puntos.
- **5.** Cada ejercicio se valorará entre 0 y 2,5 puntos.
- **6.** En aquellas cuestiones en las que no se especifique el método de resolución que se ha de aplicar, se admitirá cualquier forma de resolverlo correctamente.

ASPECTOS QUE MERECEN VALORACIÓN POSITIVA

- Los planteamientos correctos, tanto global como de cada una de las partes, si las hubiere.
- La correcta utilización de conceptos, vocabulario y notación científica.
- El conocimiento de técnicas específicas de aplicación directa para el cálculo y/o interpretación de datos numéricos y gráficos.
- La terminación completa del ejercicio y la exactitud del resultado.
- Se considerarán igualmente válidas dos soluciones que solo se diferencien en el grado de exactitud empleado en los cálculos numéricos.
- No se tomarán en consideración errores numéricos, de cálculo, etc., siempre que no sean de tipo conceptual.
- La claridad de las explicaciones de los pasos seguidos.
- Las ideas, gráficos, presentaciones, esquemas, ..., que ayuden a visualizar mejor el problema y su solución.
- La pulcritud de la presentación, y cualquier otro aspecto que refleje la madurez que cabe esperar de un estudiante que aspira a entrar en la universidad.

ASPECTOS QUE MERECEN VALORACIÓN NEGATIVA

- Los planteamientos incorrectos.
- La confusión de conceptos.
- La abundancia de errores de cálculo (por ser indicativa de deficiencias de orden básico).
- Los errores aislados, cuando indican falta de reflexión crítica o de sentido común (por ejemplo, decir que la solución a tal problema es -3,7 frigoríficos, o que cierta probabilidad vale 2,5).
- Los errores aislados, cuando conducen a problemas más sencillos que los inicialmente propuestos.
- La ausencia de explicaciones, en particular del significado de las variables que se están utilizando.
- Los errores ortográficos graves, el desorden, la falta de limpieza, la mala redacción y cualquier otro aspecto impropio de un estudiante que aspira a entrar en la universidad.

CRITERIOS PARTICULARES PARA CADA UNO DE LOS PROBLEMAS

BLOQUE: ÁLGEBRA

Problema A.1. (hasta 2,5 puntos)

- **a.** 0,75 puntos. Cálculo de los valores de los parámetros m y n.
 - Planteamiento del problema, 0,15 puntos.
 - Deducir el valor del parámetro m de la igualdad $A = A^t$, **0,2 puntos.**
 - Expresar la deducción $\nexists A^{-1} \Rightarrow |A| = 0$, **0,2 puntos.**
 - Deducir el valor del parámetro n, 0,2 puntos
- **b.** 0,75 puntos. Calcular la matriz inversa de la matriz A
 - Cálculo del determinante de la matriz A, 0,25 puntos.
 - Determinar la matriz Adj A, 0,25 puntos.
 - Calcular la matriz A^{-1} , **0,25 puntos**.
- c. 1 punto. Resolver la ecuación matricial.
 - Determinar la matriz X, 0,3 puntos.
 - Calcular la matriz A², 0,25 puntos.
 - Calcular la matriz $A^2 2I_3$, **0,2 puntos**.
 - Cálculo de la matriz X, 0,25 puntos.

Problema B.1. (hasta 2,5 puntos)

a. 2 puntos

- Concretar la función objetivo, 0,1 puntos.
- Determinar las restricciones, 0,2 puntos.
- Determinar y representar la región factible, 1 punto.
- Concretar los vértices de la región factible, 0,4 puntos.
- Valorar la función en los vértices, 0,2 puntos.
- Determinar el máximo y valorar la función en ese punto, 0,1 puntos.

b. 0,5 puntos.

Respuesta razonada, 0,5 puntos.

BLOQUE: ANÁLISIS

Problema A.2. (hasta 2,5 puntos)

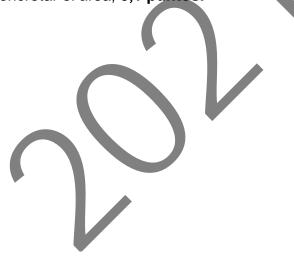
- **a. 0,5 puntos.** Valor del parámetro a para que la función sea continua en el punto x = 1.
 - Definir la continuidad de una función en un punto, 0,15 puntos.
 - Cálculo de los límites laterales, 0,25 puntos.
 - Determinar el valor del parámetro a, 0,1 puntos.
- **b.** 0,4 puntos. Recta tangente de la función en el punto x=2.
 - Determinar la pendiente de la recta tangente, 0,2 puntos.
 - Determinar la ecuación de la recta tangente, 0,2 puntos.
- c. 1 punto.
 - Cálculo de los extremos de la función, 0,2 puntos.
 - Determinar los máximos y los mínimos relativos, 0,2 puntos.
 - Determinar los puntos de inflexión, 0,2 puntos.
 - Representación gráfica.
 - Representación del polinomio de tercer grado, 0,2 puntos.
 - Representación de la función racional, 0,2 puntos.
- d. 0,6 puntos. Cálculo de la integral indefinida.
 - Cálculo de la integral $\int x^3 dx$, **0,1 puntos.**
 - Cálculo de la integral ∫ 3x² dx, 0,1 puntos.
 - Cálculo de la integral $\int_{-x}^{2} dx$, **0,2 puntos.**
 - Cálculo de la integral $\int \frac{4}{x^2} dx$, **0,2 puntos.**

Problema B.2. (hasta 2,5 puntos)

- **a.** 1 punto. Determinar el valor de los parámetros a y b.
 - El cálculo de la primera derivada, 0,2 puntos.
 - (2, 5) es un punto de la función, 0,25 puntos.
 - La función en el punto (2, 5) tiene un extremo relativo, **0,25 puntos.**
 - Solucionar el sistema que se ha creado, 0,3 puntos.

b. 0,75 puntos.

- El cálculo de los extremos de la función, 0,3 puntos.
- Determinar los máximos y mínimos relativos de la función, 0,2 puntos.
- Concretar los puntos de inflexión.
 - Segunda derivada, **0,1 puntos.**
 - Determinar los puntos de inflexión, 0,15 puntos.
- c. 0,75 puntos. Área de la región delimitada por la función y el eje de abscisas OX.
 - Representación gráfica, 0,25 puntos.
 - Cálculo de la integral definida.
 - Calcular la integral indefinida, 0,2 puntos.
 - Aplicar Barrow, 0,2 puntos.
 - Concretar el área, 0,1 puntos.



BLOQUE: PROBABILIDAD

Problema A.3. (hasta 2,5 puntos)

a. 1 punto.

- Hacer un diagrama de árbol o algún esquema, 0,5 puntos.
- El cálculo de la probabilidad pedida, 0,5 puntos.

b. 0,5 puntos.

El cálculo de la probabilidad pedida, 0,5 puntos.

c. 1 punto.

- Indicar la probabilidad a posteriori, el teorema de Bayes, 0,5 puntos.
- El cálculo de la probabilidad pedida, 0,5 puntos.

Problema B.3. (hasta 2,5 puntos)

a. 0,75 puntos.

- Hacer un diagrama de Venn o algún esquema, 0,25 puntos.
- Indicar la fórmula $P(A \cup B)$, **0,25 puntos**.
- El cálculo de la probabilidad pedida, 0,25 puntos.

b. 1 punto.

- Hacer un diagrama de árbol o algún esquema, 0,2 puntos.
- Determinar qué tiene que calcular, 0,15 puntos.
- Indicar la fórmula $P(C/D^c)$, **0,25 puntos.**
- Indicar la fórmula $P(C \cap D)$, **0,25 puntos.**
- El cálculo de la probabilidad pedida, 0,15 puntos.

c. 0,75 puntos.

- Expresar qué quiere decir que dos sucesos son independientes, 0,2 puntos.
- Determinar qué tiene que calcular, 0,15 puntos.
- E^c y F^c también son independientes o indicar la formula $P(E^c \cap F^c)$ o hacer una tabla de contingencia, **0,25 puntos.**
- El cálculo de la probabilidad pedida, 0,15 puntos.

BLOQUE: INFERENCIA ESTADÍSTICA

Problema A.4. (hasta 2,5 puntos)

a. 0,75 puntos.

- El planteamiento del problema, 0,2 puntos.
- La tipificación de la variable, 0,2 puntos.
- Concretar el valor en la tabla de la distribución normal, 0,2 puntos
- Resolver la ecuación obteniendo σ, 0,15 puntos.

b. 0,75 puntos.

- El planteamiento del problema, 0,2 puntos.
- Concretar el valor en la tabla de la distribución normal, 0,3 puntos.
- Determinar el valor k pedido, 0,25 puntos.

c. 1 punto.

- El planteamiento del problema, 0,2 puntos.
- Calcular $P(X \le 6.8)$, **0.3 puntos**
- Calcular $P(X \le 2.8)$, **0,4 puntos**.
- El porcentaje pedido, 0,1 puntos.

Problema B.4. (hasta 2,5 puntos)

a. 1,5 puntos.

- Indicar que sabe qué es la media muestral, 0,2 puntos.
- Determinar la media muestral, 0,5 puntos.
- Determinar $z_{\frac{\alpha}{2}}$, **0,3 puntos.**
- Expresar qué es el error, 0,2 puntos.
- Indicar la fórmula del error, 0,2 puntos.
- El cálculo del tamaño de la muestra, 0,1 puntos.

b. 1 punto.

- Determinar $z_{\frac{\alpha}{2}}$, **0,4 puntos.**
- Expresar la fórmula del error, 0,2 puntos.
- El cálculo del error, **0,4 puntos.**

SOLUCIONES

BLOQUE: ÁLGEBRA

A.1. Cálculo matricial. Cálculo de la matriz inversa. Ecuación matricial.

Dada la matriz
$$A = \begin{pmatrix} 1 & -1 & 1 \\ m & n & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

a) Calcular m y n tales que $A = A^t y \not\equiv A^{-1}$.

b) Para m = 0 y n = 3, obtener A^{-1}

$$|A| = \begin{vmatrix} 1 & -1 & 1 \\ 0 & 3 & 1 \\ 1 & 1 & 2 \end{vmatrix} = 1$$

c) Para m=0 y n=3, resolver la ecuación matricial $X\cdot A+2$ $I_3=A^2$

$$X \cdot A + 2I_3 = A^2 \implies X \cdot A = A^2 - 2I_3 \implies X = (A^2 - 2I_3) \cdot A^{-1}$$

B.1. Problema de programación lineal con dos variables.

	Perlas blancas	Perlas grises	Perlas rosas	Beneficio	CANTIDAD
Α	20	20	30	60 €	х
В	10	20	60	50 €	у

a)

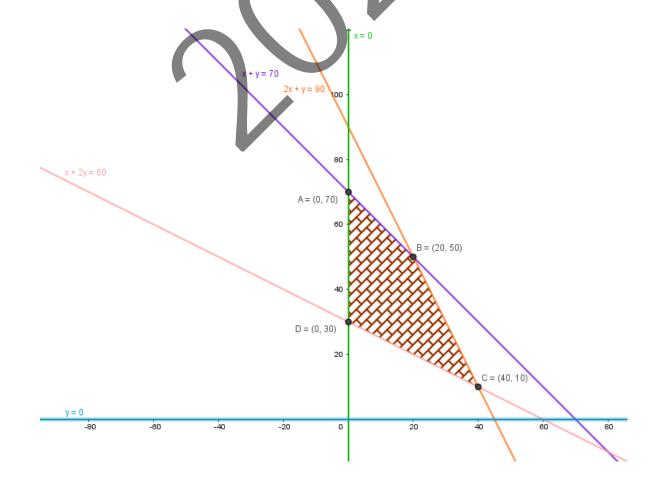
La función objetivo es:

$$f(x,y) = 60 x + 50 y$$

Las restricciones son:

$$\begin{cases} x \ge 0 \\ y \ge 0 \\ 20x + 10y \le 900 \\ 20x + 20y \le 1400 \\ 30x + 60y \ge 1800 \end{cases} \Rightarrow \begin{cases} x \ge 0 \\ y \ge 0 \\ 2x + y \le 90 \\ x + y \le 70 \\ x + 2y \ge 60 \end{cases}$$

♣ En el plano XY la región factible es:



Luego, los vértices son:

$$A(0,70)$$
, $B(20,50)$, $C(40,10)$, $D(0,30)$

$$4 f(A) = f(0,70) = 3500$$

$$f(B) = f(20, 50) = 3700$$

$$f(C) = f(40, 10) = 2900$$

$$f(D) = f(0,30) = 1500$$

- ♣ Por lo tanto, el valor máximo de la función se obtiene en el punto B(20, 50), y consecuentemente, se deben fabricar 20 camisas del tipo A y 50 del tipo B, obteniendo así el beneficio máximo que es de 3700 €.
 - b) No se pueden fabricar 40 camisas del tipo A y 20 camisas del tipo B, ya que el punto (40, 20) no pertenece al recinto al no cumplir todas las restricciones.

$$2x + y \le 90 \implies 2 \cdot 40 + 20 = 100 \le 90 \implies Falso$$

$$x + y \le 70 \implies 40 + 20 = 60 \le 70 \implies Cierto$$

$$x + 2y \ge 60 \implies 40 + 2 \cdot 20 = 80 \ge 60 \implies Cierto$$

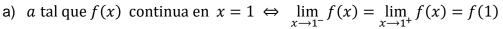
$$x \ge 0 \implies 40 \ge 0 \implies Cierto$$

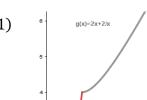
$$y \ge 0 \implies 20 \ge 0 \implies Cierto$$

BLOQUE: ANÁLISIS

A.2. Continuidad de una función. Representación gráfica. Cálculo de los valores de una función, máximos, mínimos, puntos de inflexión... y del área que forma con el eje de abscisas.

$$f(x) = \begin{cases} x^3 + 3x^2 & \text{si } x < 1\\ ax + \frac{2}{x} & \text{si } x \ge 1 \end{cases}$$

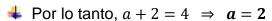


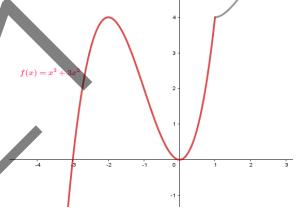


$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x^{3} + 3x^{2} = 4$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} ax + \frac{2}{x} = a + 2$$

$$f(1) = a + 2$$





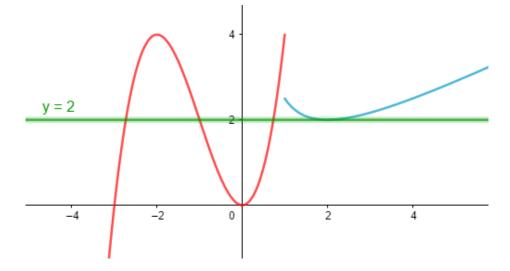
- b) Ecuación de la recta tangente a la función en el punto de abscisa x = 2.
 - La ecuación de la recta tangente a la función en x = 2

$$y = f'(2) \cdot x + n$$

•
$$f'(x) = \frac{1}{2} - \frac{2}{x^2} \Rightarrow f'(2) = 0 \Rightarrow y = 0 \cdot x + n = n \Rightarrow y = n$$

•
$$(2, f(2)) = (2, 2)$$
 está en la recta tangente $\Rightarrow 2 = n$

Por lo tanto: y = 2



c) Máximos y mínimos relativos, puntos de inflexión y representación gráfica de la función, en el caso a=2.

$$f(x) = \begin{cases} x^3 + 3x^2 & \text{si } x < 1\\ 2x + \frac{2}{x} & \text{si } x \ge 1 \end{cases}$$

- Si x < 1
 - **4** Máximos y mínimos relativos $\Rightarrow f'(x) = 0$

$$f'(x) = 3x^2 + 6x \Rightarrow f'(x) = 0 = 3x^2 + 6x \Rightarrow 3x(x+2) = 0$$
$$\Rightarrow x = 0 \ v \ x = -2$$

•
$$f''(x) = 6x + 6 \Rightarrow \begin{cases} f''(0) = 6 > 0 \Rightarrow x = 0 \text{ mínimo} \\ f''(-2) = -6 < 0 \Rightarrow x = -2 \text{ máximo} \end{cases}$$

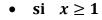
$$f(0) = 0 \Rightarrow (0, 0)$$
 mínimo relativo.

❖
$$f(-2) = 4 \Rightarrow (-2, 4)$$
 máximo relativo.

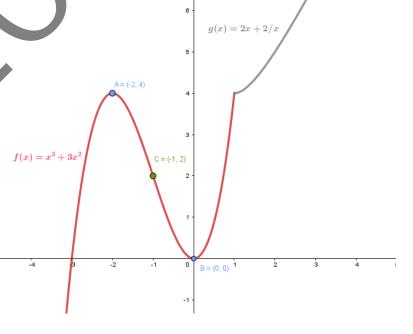
4 Puntos de inflexión $\Rightarrow f^{"}(x) = 0$

•
$$f''(x) = 6x + 6 \Rightarrow 6x + 6 = 0 \Rightarrow x = -1$$

❖
$$f(-1) = 2$$
 ⇒ $(-1,2)$ punto de inflexión.



x	1	2	4
f(x)	4	5	17/2



$$\int \left(x^3 + 3x^2 + \frac{2}{x} - \frac{4}{x^2} \right) dx$$

$$= \frac{x^4}{4} + 3\frac{x^3}{3} + 2\int \frac{1}{x}dx - 4\int x^{-2} dx = \frac{1}{4}x^4 + x^3 + 2\ln(x) + 4\frac{1}{x} + K$$

B.2. Problema de análisis de una función. Cálculo de máximos, mínimos, puntos de inflexión y representación gráfica. Cálculo del área.

$$f(x) = ax^3 + bx + 11$$

- a) Calcular a y b para que la función f(x) tenga un extremo en el punto (2, 5)
 - f(x) tiene un extremo en el punto (2, 5) \Rightarrow $\begin{cases} f(2) = 5 \\ f'(2) = 0 \end{cases}$

$$f(2) = 5 \implies 8a + 2b + 11 = 5$$

$$f'(x) = 3a x^2 + b \Rightarrow f'(2) = 0 \Rightarrow 12a + b = 0$$

Por lo tanto, tenemos el sistema $\begin{cases} 8a + 2b = -6 \\ 12a + b = 0 \end{cases} \Rightarrow a = \frac{3}{8}$ y $b = -\frac{9}{2}$

b) Para $a = \frac{3}{8}$ y $b = \frac{-9}{2}$, estudiar los extremos relativos y los puntos de inflexión.

$$f(x) = \frac{3}{8}x^3 - \frac{9}{2}x + 11.$$

$$f'(x) = \frac{9}{8}x^2 - \frac{9}{2}$$

$$f(x) = \frac{1}{8}x^{3} - \frac{1}{2}x + 11.$$

$$f'(x) = \frac{9}{8}x^{2} - \frac{9}{2}$$

$$f'(x) = 0 \implies \frac{9}{8}x^{2} - \frac{9}{2} = 0 \implies \frac{9x^{2} - 36}{8} = 0 \implies 9x^{2} = 36 \implies x^{2} = 4 \implies x = \pm 2$$

$$f''(x) = \frac{9}{4}x$$

$$A = (-2, 17) = \frac{9}{18}$$

$$f''(x) = \frac{9}{4}x$$

$$\checkmark f''(2) = \frac{9}{2} > 0 \implies x = 2 \text{ mínimo}$$

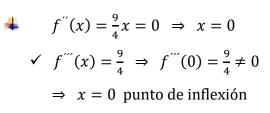
$$\checkmark f(2) = 5$$

Entonces (2,5) es mínimo relativo.

$$f''(-2) = -\frac{9}{2} < 0 \implies x = -2 \text{ máximo}$$

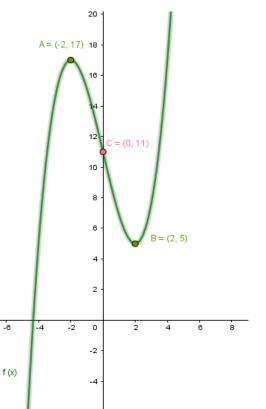
✓
$$f(-2) = 17$$
.

Entonces (-2, 17) es máximo relativo.



$$\checkmark f(0) = 11$$

Entonces (0, 11) es un punto de inflexión.

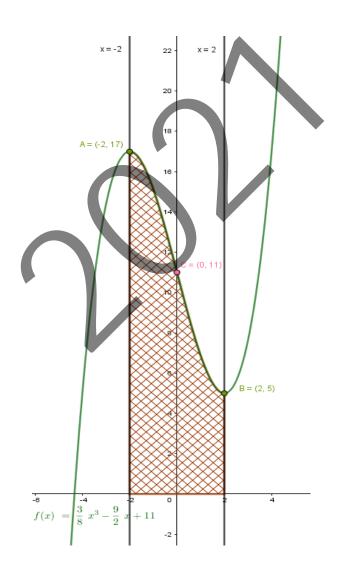


c) Área.

$$\int_{-2}^{2} \left(\frac{3}{8} x^3 - \frac{9}{2} x + 11 - 0 \right) dx = \left[\frac{3}{8} \frac{x^4}{4} - \frac{9}{2} \frac{x^2}{2} + 11 x \right]_{-2}^{2} = \left[\frac{3}{32} x^4 - \frac{9}{4} x^2 + 11 x \right]_{-2}^{2} =$$

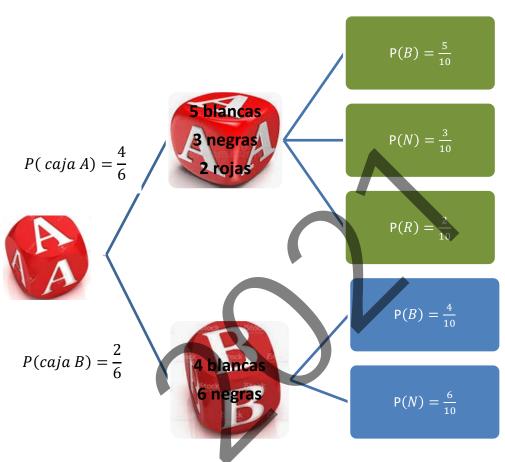
$$= \left(\frac{3}{32} \cdot 16 - \frac{9}{4} \cdot 4 + 11 \cdot 2 \right) - \left(\frac{3}{32} \cdot 16 - \frac{9}{4} \cdot 4 - 11 \cdot 2 \right) = \frac{3}{2} - 9 + 22 - \frac{3}{2} + 9 + 22$$

$$= 44 u^2$$



BLOQUE: PROBABILIDAD

A.3. Ejercicio de cálculo de probabilidades que puede resolverse, a través de un diagrama de árbol o a través de la fórmula de la probabilidad total.



a) Probabilidad de sacar bola blanca.

$$P(B) = \frac{4}{6} \cdot \frac{5}{10} + \frac{2}{6} \cdot \frac{4}{10} = \frac{7}{15} \implies P(B) = 0,4667 \implies 46,67\%$$

b) Probabilidad de sacar bola roja.

$$P(R) = \frac{4}{6} \cdot \frac{2}{10} = \frac{2}{15} \implies P(R) = 0,1333 \implies 13,33\%$$

 c) Sabiendo que la bola extraída ha resultado ser blanca, probabilidad de que proceda de la urna B.

$$P(caja \ B|B) = \frac{P(caja \ B \cap B)}{P(B)} = \frac{\frac{2}{6} \cdot \frac{4}{10}}{\frac{4}{6} \cdot \frac{5}{10} + \frac{2}{6} \cdot \frac{4}{10}} = \frac{2}{7} = 0,2857 \Rightarrow 28,57 \%$$

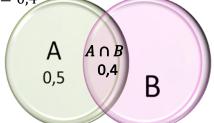
B.3. Problema de cálculo de probabilidades.

a) Se sabe que P(A) = 0.5; $P(A \cup B) = 0.7$; $P(A \cap B) = 0.4$

Entonces:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Rightarrow$$

0,7 = 0,5 + P(B) - 0,4 \Rightarrow **P(B)** = **0**,6

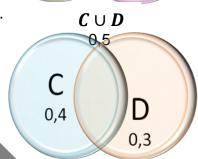


b) Se sabe que P(C) = 0.4; P(D) = 0.3; $P(C \cup D) = 0.5$.

$$P(C / D^{c}) = \frac{P(C \cap D^{c})}{P(D^{c})} = \frac{P(C) - P(C \cap D)}{P(D^{c})} =$$

$$= \frac{P(C) - [P(C) + P(D) - P(C \cup D)]}{P(D^{c})} =$$

$$= \frac{-0.3 + 0.5}{1 - 0.3} = \frac{2}{7} = \mathbf{0.2857}$$



c) Sabemos que P(E) = 0.6; P(F) = 0.8, y que los sucesos E y F son independientes. Por ser independientes:

$$\circ \quad P(E \cap F) = P(E) \cdot P(F)$$

o
$$E^c$$
 y F^c también son independientes $\Rightarrow P(E^c \cap F^c) = P(E^c) \cdot P(F^c)$

Por lo tanto: $P(E^c \cap F^c) = P(E^c) \cdot P(F^c) = 0.4 \cdot 0.2 = 0.08$

OTRA MANERA:

$$P(E^c \cap F^c) = P(E \cup F)^c = 1 - P(E \cup F) = 1 - [P(E) + P(F) - P(E \cap F)]$$
$$= 1 - [P(E) + P(F) - P(E) \cdot P(F)] = 1 - [0.6 + 0.8 - 0.6 \cdot 0.8] = 0.08$$

OTRA MANERA: a través de una tabla de contingencia o de doble entrada.

$$P(E \cap F) = P(E) \cdot P(F) = 0.6 \cdot 0.8 = \mathbf{0.48}$$

	F	F ^c	
E	0,48	0,12	0,6
E ^c	0,32	0,08	0,4
	0,8	0,2	1

Por lo tanto: $P(E^c \cap F^c) = 0.08$

BLOQUE: INFERENCIA ESTADÍSTICA

A.4. Comprensión y utilización de una distribución normal.

El resultado de un test de empatía $X \equiv \mathcal{N}(4.8, \sigma)$

a) Cálculo de la desviación típica.

$$P(X \le 4) = 0.4$$

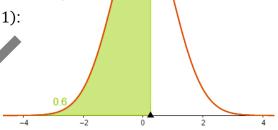
$$P(X \le 4) = 0.4 \implies P\left(\frac{X-\mu}{\sigma} \le \frac{4-\mu}{\sigma}\right) = 0.4 \Rightarrow P\left(Z \le \frac{4-4.8}{\sigma}\right) = P\left(Z \le \frac{-0.8}{\sigma}\right) = 0.4$$

$$\Rightarrow P\left(Z \ge \frac{0.8}{\sigma}\right) = 0.4 \Rightarrow 1 - P\left(Z \le \frac{0.8}{\sigma}\right) = 0.4 \Rightarrow P\left(Z \le \frac{0.8}{\sigma}\right) = 0.6$$

Buscamos en la tabla de la distribución $Z \equiv \mathcal{N}(0,1)$:

$$P\left(Z \le \frac{0.8}{\sigma}\right) = 0.6 \quad \Rightarrow \quad \frac{0.8}{\sigma} = 0.255$$

$$\Rightarrow \quad \sigma = \frac{0.8}{0.255} = 3.137$$



b) Si $\sigma = 3.14$, calcular el valor k que solo supera el 35 % de la población.

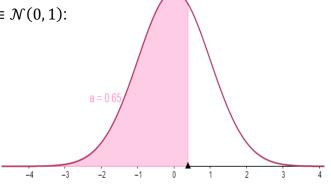
$$X \equiv \mathcal{N}(4,8, 3,14)$$

$$P(X \le k) = 0.65 \implies P\left(\frac{X-\mu}{\sigma} \le \frac{k-\mu}{\sigma}\right) = 0.65 \implies P\left(Z \le \frac{k-4.8}{3.14}\right) = 0.65$$

Buscamos en la tabla de la distribución $Z \equiv \mathcal{N}(0,1)$:

$$\frac{k-4.8}{3.14} = 0.385 \implies$$

$$k = 4, 8 + 0, 385 \cdot 3, 14 = 6$$



Por lo tanto, solo el 35 % de la población consigue un resultado superior a 6 puntos.

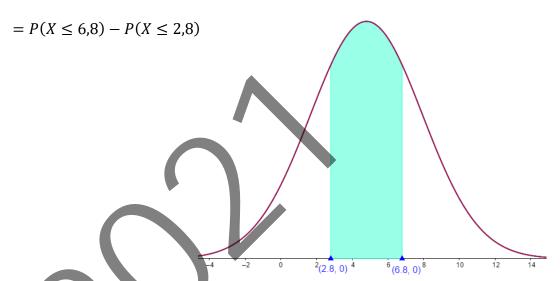
c) Si
$$\sigma = 3.14$$
, calcular $P(\mu - 2 \le X \le \mu + 2)$

$$X \equiv \mathcal{N} (4.8, 3.14)$$

$$♣ X ≡ 𝒩(μ = 4,8, σ = 3,14)$$

$$\Psi P(\mu - 2 \le X \le \mu + 2) = ?$$

$$P(\mu - 2 \le X \le \mu + 2) = P(4.8 - 2 \le X \le 4.8 + 2) = P(2.8 \le X \le 6.8) =$$



•
$$P(X \le 6, 8) = P\left(\frac{X-\mu}{\sigma} \le \frac{6,8-\mu}{\sigma}\right) = P\left(Z \le \frac{6,8-4,8}{3,14}\right) = P\left(Z \le \frac{2}{3,14}\right) = P(Z \le 0,64) = 0,7389$$

•
$$P(X \le 2, 8) = P\left(\frac{X-\mu}{\sigma} \le \frac{2,8-\mu}{\sigma}\right) = P\left(\frac{X-\mu}{\sigma} \le \frac{2,8-4,8}{\sigma}\right) = P(Z \le -0.64) = P(Z \ge 0.64) = 1 - P(Z \le 0.64) = 1 - 0.7389 = 0.2611$$

Por lo tanto;

$$P(\mu - 2 \le X \le \mu + 2) = P(X \le 6.8) - P(X \le 2.8) = 0.7389 - 0.2611 = 0.4778$$

 $\Rightarrow 47.78\%$

B.4. Ejercicio sobre la distribución de la media muestral. Intervalo de confianza para la media muestral. Tamaño de la muestra y error máximo admisible.

El gasto que hacen los jóvenes durante un fin de semana $X \equiv \mathcal{N}(\mu, 6)$

- a) Calcular el valor de la media muestral y el tamaño de la muestra elegida.
- El valor de la media muestral $\equiv \overline{x}$
 - Sabemos que el intervalo de confianza para la media μ con un nivel de confianza del 95 % es (24,47, 26,43).
 - ♣ El valor de la media muestral es el punto medio del intervalo de confianza.
 Por lo tanto:

$$\bar{x} = \frac{24,47 + 26,43}{2} = 25,45$$
 $\Rightarrow \bar{x} = 25,45$

- El tamaño de la muestra elegida.
 - \leftarrow Calculamos $z_{\frac{\alpha}{2}}$

Nivel de confianza: $n_c = 0.95 = 1 - \alpha \Rightarrow \alpha = 0.05 \Rightarrow \frac{\alpha}{2} = 0.025 \Rightarrow Z_{\frac{\alpha}{2}} = 1.96$ $P\left(Z \ge z_{\frac{\alpha}{2}}\right) = 0.025 \Rightarrow 1 - P\left(Z \le z_{\frac{\alpha}{2}}\right) = 0.025 \Rightarrow P\left(Z \le z_{\frac{\alpha}{2}}\right) = 0.975 \Rightarrow z_{\frac{\alpha}{2}} = 1.96$

♣ El error máximo para la media es la mitad de la amplitud del intervalo de confianza.

Por lo tanto:

$$e = \frac{26,43 - 24,47}{2} = 0,98$$

Aplicando la fórmula del error para la media calculamos el tamaño de la muestra:

$$e = 0.98 = Z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} = 1.96 \cdot \frac{6}{\sqrt{n}} \Rightarrow \sqrt{n} = 1.96 \cdot \frac{6}{0.98} = 12 \Rightarrow n = 144$$

- b) Para n = 49 calcular el error máximo admisible con un nivel de confianza del 97 %
 - Calculamos z_{α/2}

Nivel de confianza: $n_c = 0.97 = 1 - \alpha \Rightarrow \alpha = 0.03 \Rightarrow \frac{\alpha}{2} = 0.015 \Rightarrow \mathbf{Z}_{\frac{\alpha}{2}} = \mathbf{2}, \mathbf{17}$ $P\left(Z \geq z_{\frac{\alpha}{2}}\right) = 0.015 \Rightarrow 1 - P\left(Z \leq z_{\frac{\alpha}{2}}\right) = 0.015 \Rightarrow P\left(Z \leq z_{\frac{\alpha}{2}}\right) = 0.985 \Rightarrow z_{\frac{\alpha}{2}} = 2.17$

Aplicando la fórmula calculamos el error:

$$e = Z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} = 2,17 \cdot \frac{6}{\sqrt{49}} \Rightarrow e = 1,86$$